Northeastern University School of Public Policy and Urban Affairs

On-Site Food Waste Disposal Systems

Capstone presentation by Isaac Griffith-Onnen and Zak Patten

Presentation Outline

- Project overview
- Overview of Three On-Site Technologies
 - 1. Isaac Griffith-Onnen: Pulpers/Shredders & Dehydrators
 - 2. Zak Patten: On-Site Composting & "Dry" Systems
 - 3. Zak Patten: Biological Liquefaction ("Wet" Systems)
- Overall Considerations
- Next Steps
- Questions?

Project Overview

MassDEP GOAL: Divert at least 35% of waste from disposal by 2020; 350,000 tons

Policy:

Food waste disposal ban in 2014 on institutions generating one ton or more of food waste.

Project Objective:

To help affected institutions gain a better understanding of on-site options for managing food waste.

Northeastern University
School of Public Policy and Urban Affairs

Non-Biological Volume and Weight Reduction

Technology Overview

- Mechanical, <u>not</u> biological
- Reduce weight & volume by removing water
- Product is <u>not</u> compost
- Two major types:
 - Pulpers/shredders
 - Waste dehydrators

Pulpers/Shredders: How They Work

<u>Pulpers</u>

- Pulped into a slurry.
- Water is removed (may be recycled).
- Pulp is discharged.

Shredders

- Waste is ground up.
- Water is pressed out.
- Lower electricity/water use.

Pulpers/Shredders: What goes in?

Mixed food waste and plastic

"Pure" food waste

Pulpers/Shredders: What comes out?

- Pulped food waste.
- Consistency of coffee grounds.
- Large volume reductions.
- Can go into other systems.

Pulpers/shredders: Advantages and Disadvantages

<u>dvantages</u>

No additives.

Large volume/weight reductions.

Accept mixed waste.

Feedstock for other systems.

<u>Disadvantages</u>

- No long-term storage.
- Landfill methane emissions.
- Odors and vermin.
- Electricity use.

Source: InSinkErator

Dehydrators: How They Work

- Use heat and mechanical processes to break up and dehydrate waste.
- Most are batch systems.
- Cycle times vary (8-20+ hours).
- Variety of sizes and capacities.

Source: Somat Company

Dehydrators: What goes in?

- Food and other organic waste.
- Some can accept a mixture of food waste and paper.
- Pulped food waste can be a feedstock.
- Cannot process large, hard items, e.g. beef bones.

Whole food waste

Pulped food waste

Dehydrators: What comes out?

- Dry, odorless, stable biomass.
- Can be stored for several months.
- Large volume and weight reductions.
- Product is not compost.

Source: GaiaRecycle

Dehydrators: Advantages and Disadvantages

<u>Advantages</u>

- Large volume and weight reductions
- Stable product.
- May reduce waste pickups.
- No additives.

<u>Disadvantages</u>

- Can add to total system cost.
- Product is not compost.
- Product may not be suitable for soil application. Testing recommended.

Source: GaiaRecycle

Case Study: Framingham State University

Northeastern University
School of Public Policy and Urban Affairs

In-Vessel Benefits

Controlled process
Faster decomposition
Product quality
Effects of weather diminished
Staffing
Collection/hauling costs
End product use

How the System Works

Sample models Hot Rot Composters - 1206 and 1811 Models

Continuous in-vessel

Modular; Fully enclosed

The Rocket

Continuous Feed
Self-contained
Content in vessel for 14 days
Brown matter needed: wood chips

BioGreen 360

Continuous feed
Self-contained
High heat
Microorganisms
24-hour process
End product storage

Dry Compost Systems: End Product

- 70-95% dry
- Mulch, soil amendment, compost

*Example of output:

740 lbs. ⇒ 35lbs. of compost

*BioGreen 360

In Vessel Compost Systems: Case Study

Harvard University

11 tons of food scraps composted weekly

Two on-site systems:

- Somat pulping machines
- BioGreen 360

Other Installations

Fairmont Copley

Roche Brothers

Cambridgeside Galleria

Johnson and Wales

Tower City Mall, Ohio

Other In-Vessel Dry Compost Vendors

Big Hanna

Susteco AB, Gothenberg, Sweden

In-Vessel Considerations and Recommendations

- Costs
- Siting; on-site development
- Equipment (purchase, lease, maintenance)
- General labor
- Process management and oversight
- Marketing/public and private partnerships and collaboration
- End-product compost use, distribution and/or disposal

Northeastern University
School of Public Policy and Urban Affairs

What is a wet system?

Major vendors

What food can go in? What can't?

YES PLEASE	× NO THANKS
All Meat (raw or cooked), EXCEPT	Big Bones or Fat Trimmings
All Fish and Shellfish (raw or cooked), EXCEPT	Clam or Mussel Shells
All Fruit and Vegetables, EXCEPT	Pineapples or Corn Husks
All Bread, Cakes and Pastries, BUT NO	Raw (uncooked) Bread Dough
All Prepared Foods, BUT NO	Packaging of Any Sort
All Dairy Products	
All Other: Egg Shells, Coffee Grinds, Pasta, etc.	Fryer Oil, Hot Soup, Frozen Items,
	Twist Ties, Rubber Bands, Plastic Bags, Gloves,
	Paper, Cardboard, Glass, Cans, Silverware

Key question: What comes out?

• Vendor view: benign, even beneficial

• View of some municipalities: not safe for sewer disposal

Case Study: Markville Shopping Centre (Ontario, Canada)

• Installed Orca Model OG2400 Oct. '12

• Off-site organics hauling: \$3,353/mo.

• On-site wet system: \$2,235 /mo.

Recommendations

Compliance with municipal wastewater standards

Ensure facility meets utility requirements

Budget/Return or investment

System Comparison

Systems Studied	Input	Output	Advantages	Considerations
Pulpers/Shredders	Organics, mixed kitchen waste	Waste pulp	Waste volume reduction	Storage of end product
Dehydrators	Pulped or unpulped food waste	Sterile Biomass	Volume reduction w/o additives	Output not compost
Composters/"Dry" Systems	Compostable food waste	Compost	Ag-Friendly output	Time, proprietary mix
Biological Liquefaction/ "Wet" Systems	Compostable food waste, proprietary additive	Effluent	No hauling costs	Is effluent sewer compliant?

Overall Considerations

Waste audit	Region and Weather
Capital costs; initial investment high	Program monitoring
Comprehensive collection system needed	Transportation costs
Plan for end-user/disposal still necessary	Staff training
On-site and surrounding space/land a consideration	ROI varies by institution

Recommendations for Mass DEP

- Hold vendor fair
- Lab test of system end products
- Performance testing vs. manufacturer claims
- Environmental life-cycle assessment of systems

Northeastern University School of Public Policy and Urban Affairs

